
12	 Intellectual Property Today JANUARY, 2012

By Steven R. Hansen, Hansen IP Law PLLC, and Dr.
Richard Turley, Colorado State University

Steve Hansen is the owner of Hansen IP Law
PLLC, a law firm specializing in intellectual
property matters. He can be reached at 248
504 4849 and srh@hanseniplaw.com.

Dr. Turley is a Professor of Computer
Information Systems at Colorado
State University. He can be reached at
rick.turley@business.colostate.edu.

Introduction

The courts have recognized for some
time that copyright protection is avail-
able for software. However, copyright

is intended to protect works of expres-
sion, not methods, functions, or algorithms.
Except in those cases where there is ver-
batim copying of all or a large portion of
source code, it can be difficult to determine
whether similarities between programs con-
stitute copyright infringement.

The courts have developed analytical
techniques for isolating the expressive, and
therefore copyright-protectable, aspects of
software. However, modern computer pro-
gram source code can total hundreds of
thousands of lines of code, or even more.
The judicial techniques for identifying what
is protectable can be difficult to implement
in practice. In general, they seek to identify
what is not protectable and “filter” it out
of the comparison between the copyrighted
and accused code, which can be a difficult
and expensive task.

It can also be difficult get a plaintiff
copyright owner to identify the protect-
able aspects of registered code which were
allegedly copied. Without a mechanism for
defining the scope of the copyright owner’s
claim, seeking summary judgment can be
very difficult. In this article, we look at
those aspects of computer source code that
may be “expressive” by examining various
design choices programmers make which
may serve as a type of “fingerprint” for
their expressive style. By identifying these

choices, we hope to provide litigants with
some key expressive features that they can
use to frame and litigate software copyright
infringement cases.

Computer Programming Basics
The C opyright Statute defines a com-

puter program as “a set of statements or
instructions to be used directly or indirectly
in a computer in order to bring about a
certain result.”1 Programs may comprise
“object code,” which is a non-textual code
that is only understandable by comput-
ers or “source code,” which is human-
readable code. O nly object code can be
executed by a computer. Source code is
converted to object code by compiling it.	
Computer programs are written to perform
functions, such as receiving and storing
data, retrieving data, performing math-
ematical calculations, providing graphical
user interfaces, and displaying data. T he
specific sequences of steps used to perform
those functions are often referred to as
“algorithms.”

Source code computer languages can be
broken down into two general categories:
“procedural programming languages,” and
“object oriented programming languages,”
or “OOP.” Procedural programming is built
around sequences of steps and algorithms
performed on the program inputs to gener-
ate program outputs. Procedural programs
tend to execute sequentially, going line
by line through the program. Structurally,
there is generally a main program and a
number of functions or subroutines, each of
which performs its own discrete functions.
These functions are generally invoked by
the main program in a set sequence.

In contrast, OO P builds on procedural
programming and further defines “classes”
which are characterized by particular attri-
butes and which may perform methods
(e.g., data manipulation or calculations)
on the attribute data and/or to generate
the attribute data. T he objects created in
the program are associated with “classes”
which provide a template for the objects,
defining their various attributes and meth-
ods. Structurally, OOP source code defines

a variety of classes and “objects” that are
specific instances of a corresponding class.
Procedural programming languages include
C, BASIC, Fortran, C obol, and Pascal.
OOP languages include Java, C ++ and
C#. OOP languages represent the current
state of the art for lengthy and complex
programming because changes can be more
easily made to discrete classes or objects
without affecting the remaining parts of the
programming. O bject oriented languages
also allow for better software reuse, making
programming more efficient.

The Scope of Computer Software
Protection

Among the statutory categories of copy-
right-protectable works, computer programs
are considered to be “literary works.”2
However, “[i]n no case does copyright
protection . . . extend to any idea, proce-
dure, process, system, method of operation,
concept, principle or discovery”3 This
prohibition is critical because software
necessarily includes some number of func-
tional features and processes that cannot be
protected by copyright law.

Courts have developed certain tech-
niques to separate the protectable from the
unprotectable aspects of software. Probably
the most widely used technique is the
Abstraction-Filtration-Comparison test set
forth by Second Circuit Court of Appeals in
Computer Associates Int’l, Inc. v. Altai.4 A
similar test used by the Ninth Circuit Court
of Appeals is the “analytic dissection” test
set forth in Apple Computer, Inc. v. Microsoft
Corp., et al.5 While the tests are not identi-
cal, they both seek to ensure that determi-
nations of copyright infringement are based
only on those aspects of programs that
constitute protectable expression. T hus,
the tests seek to filter out or dissect the
following:

1.	 Ideas (functions)

2.	 Features dictated by efficiency or which
are necessarily incidental to the ideas
underlying the program

3.	 Features dictated by the mechanical
specifications of the computer on which
the program is intended to run

4.	 Features necessary to provide compat-
ibility with other programs

5.	 Features dictated by industry standards
or common practices

6.	 Public domain elements (e.g., open
source programs)6

Strategies for Litigating
Software Copyright
Infringement Cases

	 Intellectual Property Today JANUARY, 2012� 13

Difficulties in Applying Apple and
Computer Associates

The Apple and Computer Associates ana-
lytical techniques are elegant and consistent
with the goals of copyright law. However,
they are difficult to apply in practice,
especially as a defendant hoping to frame
discovery or obtain summary judgment.
How do you get a copyright owner to admit
what is “non-protectable” or to define what
is truly protectable and allegedly included
in the accused work? If you cannot pin the
copyright owner down, how do you move for
summary judgment or frame the case for the
jury? In a patent case, the parties have a set
of patent claims which defines the scope of
what is protected. However, in a software
copyright case, the scope of the protected
right is much more amorphous and difficult
to pin down.

As with other cases, you can and should
serve contention interrogatories. However,
aggressive copyright owners may resist
committing to the scope of their claim and
may ask the C ourt to allow them to defer
responding until the close of discovery. If
the copyright holder responds in general,
vague terms, you may have to meet and
confer several times to force the issue. How
do you develop a discovery plan, frame
your expert reports, or otherwise develop
the case when you do not even know what
you’re aiming at? In general, filing a sum-
mary judgment motion forces a plaintiff to
commit to its positions, but how can you
given the analytical framework provided by
the courts?

One strategy is to set up a “straw man”
by identifying the potentially expressive
aspects of a copyrighted program and show-
ing that they are not present in the accused
program. To do this, it is instructive to look
at the arbitrary or expressive design choices
programmers make when writing software.

What are the Expressive Aspects of
Source Code?

Generally speaking, the expressive ele-
ments relate to the choices made by a
programmer which are not constrained by
requirements of the design or the program-
ming languages and development environ-
ments used to create the code. Here are
some to look for:

Programming Languages & Development
Environment

The programmer is often free to select
the programming language for implement-

ing a program. At a high level, the program-
mer chooses whether to use procedural
programming or OOP. The programmer can
then choose from among a variety of proce-
dural and OOP languages, each having its
own commands and syntax.

Once a language is selected, it inher-
ently constrains the programmer and limits
his expressive choices. Some languages
place more constraints than others. To the
extent that a certain language requires the
use of specific key words or structures,
these cannot be considered expressive ele-
ments.

The programmer may also select a “soft-
ware development environment” (SDE),
which is a program that provides an interface
for writing and debugging code. A devel-
opment environment such as Microsoft’s
Visual Studio® assists the programmer
by automatically generating certain code,
such as that used to create user interfaces.
Once an SDE is selected, however, it will
also constrain the expressive aspects of the
programmer’s coding. For example, certain
SDE’s automatically create certain lines of
code such as declaration headers or user
interface implementations (e.g., the shapes
and colors of buttons, screens, etc.). Such

elements are not original to the programmer
and cannot be protected.

Program Structure
Programmers choose how to organize

their code. For example, programmers may
modularize their code to varying degrees.
In the case of OO P, this means that one
programmer may define a larger number of
classes than another programmer, whereas
a procedural programmer may make greater
use of discrete subroutines. The amount of
complexity and functionality provided by
the individual modules may also differ. For
example, “pure” OO P programmers tend
to limit their classes to a single functional
purpose, while others may “stuff” several
functions into the same class. T he former
type of programmer will have more classes
with fewer attributes and methods defined
for each class than will the latter. T he
particular combinations of methods (e.g.,
calculation or data processing sequences)
used in functionally analogous classes may
also differ between different programmers.
Method declarations-- including name,
method return data type, and the number
and type of parameters--are particularly
expressive elements.

14	 Intellectual Property Today JANUARY, 2012

Coding Style
Programmers also choose their coding

style. O ne common coding style issue is
the use of conventions regarding the names
used for variables, methods, and classes.
There are several variable naming conven-
tions, referred to as “Hungarian Notation,”
“Camel C ase,” and “Pascal C ase.” T he
conventions differ as to their use of pre-
fixes, capitalization, the use of underscores,
etc. Programmers not only choose which
convention to use, but also how consistently
to apply that convention. Some program-
mers may be rigidly consistent while oth-
ers may change conventions at different
points in their code. Programmers may
also dispense with the standard naming
conventions and use their own convention.
Within a particular naming convention, the
variable naming format is standardized, so
the use of the standardized format is not
protectable, but the choice of standardized
format may be.

Tools for Expressive Analysis
Automated tools are useful for detecting

verbatim copying, but are not as helpful
where the alleged copying is not verbatim.

There is no current industry standard set of
tools for identifying the expressive elements
of source code or filtering out the non-
protectable elements. Some tools help auto-
mate the process, but the comparison still
relies on a substantial amount of manual
investigation of proposed similarities.

Framing Discovery and Summary
Judgment Motions

At a minimum, contention interroga-
tories should be used to force the copy-
right holder to identify what protectable
expression was allegedly copied. However,
another approach is to direct targeted dis-
covery to expressive aspects of the accused
and copyrighted programs. D eposition
questions, interrogatories, and/or requests
for admission may be directed to the fol-
lowing issues:

—	The variable naming conventions used,
and why they were used;

—	The scheme used to structure classes (in
the case of OOP languages) and why it
was used;

—	The programming language that was
used and why;

—	Differences between the structure and
function(s) of key classes or the numbers
of classes used to achieve a particular
programming function;

—	The method headers (method names,
return types, and number and type of
parameters) used to implement key fea-
tures, and why each was used;

—	The function and use of the SDE.

While courts rightfully seek to identify
protectable expression in software, their
techniques can be unwieldy for a defendant
seeking to define and litigate a software
copyright infringement case. We hope that
the foregoing strategies will help especially
where copyright holders resist efforts to
define and focus their claims. IPT

Endnotes
1.	 17 USC § 101

2.	 Computer Assoc. Int’l, Inc. v. Altai, Inc., 982 F.2d
693, 702 (2d. Cir. 1992)

3.	 17 USC § 102(b)

4.	 982 F.2d 693 (2d. Cir. 1992)

5.	 35 F.3d 1435 (9th Cir. 1994)

6.	 Computer Assoc., Int’l, 982 F.2d at 707-710; Apple
Computer, Inc., 35 F.3d at 1444-1445.

Cozen O’Connor Wins Another $15.8 Million, And More, in Patent Infringement Damages for Metso Minerals, Inc.
Cozen O’Connor, among the top 100 law firms in the United States, announced that it has successfully protected the patent rights
of Metso Minerals, Inc., a global supplier of technology and services for the mining and construction industries, against T erex
Corporation, a global manufacturer of heavy machinery, one of its subsidiaries and two of its dealers. The final judgment is expected
to lead to a total of $50 million in damages.

In December 2010, a jury had awarded Metso Minerals, Inc. $15.8 million in damages for patent infringement nearly five years
after the Metso Minerals, Inc. v. Powerscreen International Distribution Limited et al lawsuit began. The first named defendant is now
known as Terex GB Limited, and the other defendants include its corporate parent, Terex Corporation, and two of their distributors,
Emerald Equipment Systems, Inc. and Powerscreen New York, Inc.

On December 9, 2011, the Federal District Court for the Eastern District of New York affirmed the jury’s verdict of one year earlier,
which was reached after a seven-week trial. T he jury verdict had held that the defendants willfully infringed Metso’s U.S. Patent
No. 5,577,618 directed to mobile screening and crushing machines. In the court’s decision, each of the defendants’ four motions
to overturn the jury’s verdict and/or for a new trial were dismissed. T he court affirmed the jury’s verdict that Metso’s patent was
infringed, that it was infringed willfully, that the patent was not obvious, that the patent was not unenforceable due to alleged inequi-
table conduct, and that Metso had not delayed commencing its lawsuit. The court also doubled the primary damages award (raising
it to $31.6 million), ordered an accounting for supplemental damages for October 2007 to the present that were not included in the
jury’s damages award, and awarded pre- and post-judgment interest. In July 2011, the court issued an order permanently enjoining
the defendants from marketing their 11 infringing mobile screeners. It is estimated that after all of the accounting is completed, the
final amount of the judgment in this case could reach $50 million.

Metso is represented in this litigation by Cozen O’Connor members Michael C. Stuart and Lisa A. Ferrari, with Marilyn Neiman
assisting during the trial.

“We are delighted that we were successful in protecting our client’s patented design which had become the standard in the indus-
try ten years ago and has been copied by a number of other competitors,” said Mr. Stuart. “The enhanced damages award underscores
the clear willful infringement of this valid, enforceable and important patent.”

Established in 1970 and ranked among the 100 largest law firms in the United States, Cozen O’Connor has 575 attorneys who
help clients manage risk and make better business decisions. The firm counsels clients on their most sophisticated legal matters in
all areas of the law, including litigation, corporate, and regulatory law. Representing a broad array of leading global corporations and
middle market companies, Cozen O’Connor serves its clients’ needs through 22 offices across two continents.

