
12	 Intellectual	ProPerty	today				January,	2012

By Steven R. HanSen, HanSen IP Law PLLC, and dR.
RICHaRd tuRLey, CoLoRado State unIveRSIty

Steve Hansen is the owner of Hansen IP Law
PLLC, a law firm specializing in intellectual
property matters. He can be reached at 248
504 4849 and srh@hanseniplaw.com.

Dr. Turley is a Professor of Computer
Information Systems at Colorado
State University. He can be reached at
rick.turley@business.colostate.edu.

IntroductIon

the	 courts	 have	 recognized	 for	 some	
time	that	copyright	protection	is	avail-
able	 for	 software.	 However,	 copyright	

is	 intended	 to	 protect	 works	 of	 expres-
sion,	not	methods,	functions,	or	algorithms.	
except	 in	 those	 cases	 where	 there	 is	 ver-
batim	 copying	 of	 all	 or	 a	 large	 portion	 of	
source	code,	it	can	be	difficult	to	determine	
whether	similarities	between	programs	con-
stitute	copyright	infringement.

the	 courts	 have	 developed	 analytical	
techniques	for	isolating	the	expressive,	and	
therefore	 copyright-protectable,	 aspects	 of	
software.	 However,	 modern	 computer	 pro-
gram	 source	 code	 can	 total	 hundreds	 of	
thousands	 of	 lines	 of	 code,	 or	 even	 more.	
the	judicial	techniques	for	identifying	what	
is	protectable	can	be	difficult	to	implement	
in	practice.	In	general,	they	seek	to	identify	
what	 is	not	 protectable	 and	“filter”	 it	 out	
of	the	comparison	between	the	copyrighted	
and	accused	code,	which	can	be	a	difficult	
and	expensive	task.	

It	 can	 also	 be	 difficult	 get	 a	 plaintiff	
copyright	 owner	 to	 identify	 the	 protect-
able	aspects	of	registered	code	which	were	
allegedly	copied.	Without	a	mechanism	for	
defining	the	scope	of	the	copyright	owner’s	
claim,	 seeking	 summary	 judgment	 can	 be	
very	 difficult.	 In	 this	 article,	 we	 look	 at	
those	aspects	of	computer	source	code	that	
may	be	“expressive”	by	examining	various	
design	 choices	 programmers	 make	 which	
may	 serve	 as	 a	 type	 of	 “fingerprint”	 for	
their	expressive	style.	By	identifying	these	

choices,	 we	 hope	 to	 provide	 litigants	 with	
some	key	expressive	features	that	they	can	
use	to	frame	and	litigate	software	copyright	
infringement	cases.	

computer programmIng BasIcs
the	 copyright	 Statute	 defines	 a	 com-

puter	 program	 as	 “a	 set	 of	 statements	 or	
instructions	to	be	used	directly	or	indirectly	
in	 a	 computer	 in	 order	 to	 bring	 about	 a	
certain	 result.”1	 Programs	 may	 comprise	
“object	code,”	which	is	a	non-textual	code	
that	 is	 only	 understandable	 by	 comput-
ers	 or	 “source	 code,”	 which	 is	 human-
readable	 code.	 only	 object	 code	 can	 be	
executed	 by	 a	 computer.	 Source	 code	 is	
converted	 to	 object	 code	 by	 compiling	 it.	
computer	programs	are	written	 to	perform	
functions,	 such	 as	 receiving	 and	 storing	
data,	 retrieving	 data,	 performing	 math-
ematical	 calculations,	 providing	 graphical	
user	 interfaces,	 and	 displaying	 data.	 the	
specific	sequences	of	steps	used	to	perform	
those	 functions	 are	 often	 referred	 to	 as	
“algorithms.”	

Source	code	computer	languages	can	be	
broken	 down	 into	 two	 general	 categories:	
“procedural	programming	 languages,”	and	
“object	 oriented	 programming	 languages,”	
or	“ooP.”	Procedural	programming	is	built	
around	 sequences	 of	 steps	 and	 algorithms	
performed	on	the	program	inputs	to	gener-
ate	 program	 outputs.	 Procedural	 programs	
tend	 to	 execute	 sequentially,	 going	 line	
by	 line	 through	 the	 program.	 Structurally,	
there	 is	 generally	 a	 main	 program	 and	 a	
number	of	functions	or	subroutines,	each	of	
which	performs	 its	own	discrete	 functions.	
these	 functions	 are	 generally	 invoked	 by	
the	main	program	in	a	set	sequence.

In	 contrast,	 ooP	 builds	 on	 procedural	
programming	and	further	defines	“classes”	
which	are	characterized	by	particular	attri-
butes	 and	 which	 may	 perform	 methods	
(e.g.,	 data	 manipulation	 or	 calculations)	
on	 the	 attribute	 data	 and/or	 to	 generate	
the	 attribute	 data.	 the	 objects	 created	 in	
the	 program	 are	 associated	 with	 “classes”	
which	 provide	 a	 template	 for	 the	 objects,	
defining	their	various	attributes	and	meth-
ods.	Structurally,	ooP	source	code	defines	

a	variety	of	classes	and	“objects”	 that	are	
specific	instances	of	a	corresponding	class.	
Procedural	programming	languages	include	
c,	 BaSIc,	 Fortran,	 cobol,	 and	 Pascal.	
ooP	 languages	 include	 Java,	 c++	 and	
c#. ooP	languages	represent	 the	current	
state	 of	 the	 art	 for	 lengthy	 and	 complex	
programming	because	changes	can	be	more	
easily	 made	 to	 discrete	 classes	 or	 objects	
without	affecting	the	remaining	parts	of	the	
programming.	 object	 oriented	 languages	
also	allow	for	better	software	reuse,	making	
programming	more	efficient.

the scope of computer software
protectIon

among	the	statutory	categories	of	copy-
right-protectable	works,	computer	programs	
are	 considered	 to	 be	 “literary	 works.”2	
However,	 “[i]n	 no	 case	 does	 copyright	
protection	 .	 .	 .	 extend	 to	 any	 idea,	 proce-
dure,	process,	system,	method	of	operation,	
concept,	principle	or	discovery”3	this	
prohibition	 is	 critical	 because	 software	
necessarily	includes	some	number	of	func-
tional	features	and	processes	that	cannot	be	
protected	by	copyright	law.	

courts	 have	 developed	 certain	 tech-
niques	to	separate	the	protectable	from	the	
unprotectable	aspects	of	software.	Probably	
the	 most	 widely	 used	 technique	 is	 the	
abstraction-Filtration-comparison	 test	 set	
forth	by	Second	circuit	court	of	appeals	in	
Computer Associates Int’l, Inc. v. Altai.4	 a	
similar	test	used	by	the	ninth	circuit	court	
of	appeals	is	the	“analytic	dissection”	test	
set	forth	in	Apple Computer, Inc. v. Microsoft
Corp.,	et al.5 While	the	tests	are	not	identi-
cal,	they	both	seek	to	ensure	that	determi-
nations	of	copyright	infringement	are	based	
only	 on	 those	 aspects	 of	 programs	 that	
constitute	 protectable	 expression.	 thus,	
the	 tests	 seek	 to	 filter	 out	 or	 dissect	 the	
following:	

1.	 Ideas	(functions)

2.	 Features	dictated	by	efficiency	or	which	
are	 necessarily	 incidental	 to	 the	 ideas	
underlying	the	program

3.	 Features	 dictated	 by	 the	 mechanical	
specifications	of	the	computer	on	which	
the	program	is	intended	to	run

4.	 Features	 necessary	 to	 provide	 compat-
ibility	with	other	programs

5.	 Features	dictated	by	industry	standards	
or	common	practices

6.	 Public	 domain	 elements	 (e.g.,	 open	
source	programs)6

strategies for Litigating
software copyright
Infringement cases

	 Intellectual	ProPerty	today				January,	2012	 13

dIffIcuLtIes In appLyIng Apple and
Computer AssoCiAtes

the	Apple and	Computer Associates	ana-
lytical	techniques	are	elegant	and	consistent	
with	 the	 goals	 of	 copyright	 law.	 However,	
they	 are	 difficult	 to	 apply	 in	 practice,	
especially	 as	 a	 defendant	 hoping	 to	 frame	
discovery	 or	 obtain	 summary	 judgment.	
How	do	you	get	a	copyright	owner	to	admit	
what	is	“non-protectable”	or	to	define	what	
is	truly	protectable	and	allegedly	included	
in	the	accused	work?	If	you	cannot	pin	the	
copyright	owner	down,	how	do	you	move	for	
summary	judgment	or	frame	the	case	for	the	
jury?	In	a	patent	case,	the	parties	have	a	set	
of	patent	claims	which	defines	the	scope	of	
what	 is	 protected.	 However,	 in	 a	 software	
copyright	 case,	 the	 scope	 of	 the	 protected	
right	is	much	more	amorphous	and	difficult	
to	pin	down.	

as	with	other	cases,	you	can	and	should	
serve	 contention	 interrogatories.	 However,	
aggressive	 copyright	 owners	 may	 resist	
committing	to	the	scope	of	their	claim	and	
may	 ask	 the	 court	 to	 allow	 them	 to	 defer	
responding	 until	 the	 close	 of	 discovery.	 If	
the	 copyright	 holder	 responds	 in	 general,	
vague	 terms,	 you	 may	 have	 to	 meet	 and	
confer	several	times	to	force	the	issue.	How	
do	 you	 develop	 a	 discovery	 plan,	 frame	
your	 expert	 reports,	 or	 otherwise	 develop	
the	case	when	you	do	not	even	know	what	
you’re	aiming	at?	In	general,	filing	a	sum-
mary	 judgment	motion	 forces	a	plaintiff	 to	
commit	 to	 its	 positions,	 but	 how	 can	 you	
given	the	analytical	framework	provided	by	
the	courts?

one	strategy	is	to	set	up	a	“straw	man”	
by	 identifying	 the	 potentially expressive	
aspects	of	a	copyrighted	program	and	show-
ing	that	they	are	not	present	in	the	accused	
program.	to	do	this,	it	is	instructive	to	look	
at	the	arbitrary	or	expressive	design	choices	
programmers	make	when	writing	software.

what are the expressIve aspects of
source code?

Generally	speaking,	 the	expressive	ele-
ments	 relate	 to	 the	 choices	 made	 by	 a	
programmer	 which	 are	 not	 constrained	 by	
requirements	of	the	design	or	the	program-
ming	 languages	and	development	environ-
ments	 used	 to	 create	 the	 code.	 Here	 are	
some	to	look	for:

programming languages & Development
environment

the	 programmer	 is	 often	 free	 to	 select	
the	 programming	 language	 for	 implement-

ing	a	program.	at	a	high	level,	the	program-
mer	 chooses	 whether	 to	 use	 procedural	
programming	or	ooP.	the	programmer	can	
then	choose	from	among	a	variety	of	proce-
dural	and	ooP	languages,	each	having	 its	
own	commands	and	syntax.

once	 a	 language	 is	 selected,	 it	 inher-
ently	constrains	the	programmer	and	limits	
his	 expressive	 choices.	 Some	 languages	
place	more	constraints	 than	others.	to	 the	
extent	that	a	certain	language	requires	the	
use	 of	 specific	 key	 words	 or	 structures,	
these	cannot	be	considered	expressive	ele-
ments.	

the	programmer	may	also	select	a	“soft-
ware	 development	 environment”	 (Sde),	
which	is	a	program	that	provides	an	interface	
for	 writing	 and	 debugging	 code.	 a	 devel-
opment	 environment	 such	 as	 Microsoft’s	
Visual	 Studio®	 assists	 the	 programmer	
by	 automatically	 generating	 certain	 code,	
such	as	that	used	to	create	user	interfaces.	
once	 an	Sde	 is	 selected,	 however,	 it	will	
also	constrain	the	expressive	aspects	of	the	
programmer’s	coding.	For	example,	certain	
Sde’s	automatically	create	certain	lines	of	
code	 such	 as	 declaration	 headers	 or	 user	
interface	implementations	(e.g.,	the	shapes	
and	 colors	 of	 buttons,	 screens,	 etc.).	 Such	

elements	are	not	original	to	the	programmer	
and	cannot	be	protected.	

program structure
Programmers	 choose	 how	 to	 organize	

their	code.	For	example,	programmers	may	
modularize	 their	 code	 to	 varying	 degrees.	
In	 the	 case	 of	 ooP,	 this	 means	 that	 one	
programmer	may	define	a	larger	number	of	
classes	 than	another	programmer,	whereas	
a	procedural	programmer	may	make	greater	
use	of	discrete	subroutines.	the	amount	of	
complexity	 and	 functionality	 provided	 by	
the	individual	modules	may	also	differ.	For	
example,	 “pure”	 ooP	 programmers	 tend	
to	 limit	 their	classes	 to	a	single	 functional	
purpose,	 while	 others	 may	 “stuff”	 several	
functions	 into	 the	 same	 class.	 the	 former	
type	of	programmer	will	have	more	classes	
with	 fewer	 attributes	 and	methods	defined	
for	 each	 class	 than	 will	 the	 latter.	 the	
particular	 combinations	 of	 methods	 (e.g.,	
calculation	 or	 data	 processing	 sequences)	
used	in	functionally	analogous	classes	may	
also	differ	between	different	programmers.	
Method	 declarations--	 including	 name,	
method	 return	 data	 type,	 and	 the	 number	
and	 type	 of	 parameters--are	 particularly	
expressive	elements.

14	 Intellectual	ProPerty	today				January,	2012

Coding style
Programmers	 also	 choose	 their	 coding	

style.	 one	 common	 coding	 style	 issue	 is	
the	use	of	conventions	regarding	the	names	
used	 for	 variables,	 methods,	 and	 classes.	
there	are	several	variable	naming	conven-
tions,	referred	to	as	“Hungarian	notation,”	
“camel	 case,”	 and	 “Pascal	 case.”	 the	
conventions	 differ	 as	 to	 their	 use	 of	 pre-
fixes,	capitalization,	the	use	of	underscores,	
etc.	 Programmers	 not	 only	 choose	 which	
convention	to	use,	but	also	how	consistently	
to	 apply	 that	 convention.	 Some	 program-
mers	 may	 be	 rigidly	 consistent	 while	 oth-
ers	 may	 change	 conventions	 at	 different	
points	 in	 their	 code.	 Programmers	 may	
also	 dispense	 with	 the	 standard	 naming	
conventions	and	use	their	own	convention.	
Within	a	particular	naming	convention,	the	
variable	naming	format	is	standardized,	so	
the	 use	 of	 the	 standardized	 format	 is	 not	
protectable,	but	the	choice	of	standardized	
format	may	be.	

tooLs for expressIve anaLysIs
automated	tools	are	useful	for	detecting	

verbatim	 copying,	 but	 are	 not	 as	 helpful	
where	the	alleged	copying	is	not	verbatim.	

there	is	no	current	industry	standard	set	of	
tools	for	identifying	the	expressive	elements	
of	 source	 code	 or	 filtering	 out	 the	 non-
protectable	elements.	Some	tools	help	auto-
mate	 the	process,	but	 the	 comparison	 still	
relies	 on	 a	 substantial	 amount	 of	 manual	
investigation	of	proposed	similarities.	

framIng dIscovery and summary
Judgment motIons

at	 a	 minimum,	 contention	 interroga-
tories	 should	 be	 used	 to	 force	 the	 copy-
right	 holder	 to	 identify	 what	 protectable	
expression	was	allegedly	copied.	However,	
another	approach	 is	 to	direct	 targeted	dis-
covery	to	expressive	aspects	of	the	accused	
and	 copyrighted	 programs.	 deposition	
questions,	 interrogatories,	 and/or	 requests	
for	 admission	 may	 be	 directed	 to	 the	 fol-
lowing	issues:

—	the	 variable	naming	 conventions	used,	
and	why	they	were	used;

—	the	scheme	used	to	structure	classes	(in	
the	case	of	ooP	languages)	and	why	 it	
was	used;

—	the	 programming	 language	 that	 was	
used	and	why;

—	differences	 between	 the	 structure	 and	
function(s)	of	key	classes	or	the	numbers	
of	 classes	 used	 to	 achieve	 a	 particular	
programming	function;

—	the	 method	 headers	 (method	 names,	
return	 types,	 and	 number	 and	 type	 of	
parameters)	used	to	implement	key	fea-
tures,	and	why	each	was	used;

—	the	function	and	use	of	the	Sde.

While	 courts	 rightfully	 seek	 to	 identify	
protectable	 expression	 in	 software,	 their	
techniques	can	be	unwieldy	for	a	defendant	
seeking	 to	 define	 and	 litigate	 a	 software	
copyright	infringement	case.	We	hope	that	
the	foregoing	strategies	will	help	especially	
where	 copyright	 holders	 resist	 efforts	 to	
define	and	focus	their	claims.		 IPT

endnotes
1.	 17	uSc	§	101

2.	 Computer Assoc. Int’l, Inc. v. Altai, Inc.,	982	F.2d	
693,	702	(2d.	cir.	1992)

3.	 17	uSc	§	102(b)

4.	 982	F.2d	693	(2d.	cir.	1992)

5.	 35	F.3d	1435	(9th	cir.	1994)

6.	 Computer Assoc., Int’l,	982	F.2d	at	707-710;	Apple
Computer, Inc.,	35	F.3d	at	1444-1445.

cozen o’connor wins another $15.8 million, and more, in patent Infringement damages for metso minerals, Inc.
cozen	o’connor,	among	the	top	100	law	firms	in	the	united	States,	announced	that	it	has	successfully	protected	the	patent	rights	
of	 Metso	 Minerals,	 Inc.,	 a	 global	 supplier	 of	 technology	 and	 services	 for	 the	 mining	 and	 construction	 industries,	 against	 terex	
corporation,	a	global	manufacturer	of	heavy	machinery,	one	of	its	subsidiaries	and	two	of	its	dealers.	the	final	judgment	is	expected	
to	lead	to	a	total	of	$50	million	in	damages.

In	december	2010,	a	jury	had	awarded	Metso	Minerals,	Inc.	$15.8	million	in	damages	for	patent	infringement	nearly	five	years	
after	the	Metso	Minerals,	Inc.	v.	Powerscreen	International	distribution	limited	et	al	lawsuit	began.		the	first	named	defendant	is	now	
known	as	terex	GB	limited,	and	the	other	defendants	include	its	corporate	parent,	terex	corporation,	and	two	of	their	distributors,	
emerald	equipment	Systems,	Inc.	and	Powerscreen	new	york,	Inc.

on	december	9,	2011,	the	Federal	district	court	for	the	eastern	district	of	new	york	affirmed	the	jury’s	verdict	of	one	year	earlier,	
which	was	reached	after	a	seven-week	trial.	 	the	jury	verdict	had	held	that	the	defendants	willfully	infringed	Metso’s	u.S.	Patent	
no.	5,577,618	directed	to	mobile	screening	and	crushing	machines.		In	the	court’s	decision,	each	of	the	defendants’	four	motions	
to	overturn	the	jury’s	verdict	and/or	 for	a	new	trial	were	dismissed.	 	the	court	affirmed	the	jury’s	verdict	 that	Metso’s	patent	was	
infringed,	that	it	was	infringed	willfully,	that	the	patent	was	not	obvious,	that	the	patent	was	not	unenforceable	due	to	alleged	inequi-
table	conduct,	and	that	Metso	had	not	delayed	commencing	its	lawsuit.		the	court	also	doubled	the	primary	damages	award	(raising	
it	to	$31.6	million),	ordered	an	accounting	for	supplemental	damages	for	october	2007	to	the	present	that	were	not	included	in	the	
jury’s	damages	award,	and	awarded	pre-	and	post-judgment	interest.		In	July	2011,	the	court	issued	an	order	permanently	enjoining	
the	defendants	from	marketing	their	11	infringing	mobile	screeners.		It	is	estimated	that	after	all	of	the	accounting	is	completed,	the	
final	amount	of	the	judgment	in	this	case	could	reach	$50	million.

Metso	is	represented	in	this	litigation	by	cozen	o’connor	members	Michael	c.	Stuart	and	lisa	a.	Ferrari,	with	Marilyn	neiman	
assisting	during	the	trial.

“We	are	delighted	that	we	were	successful	in	protecting	our	client’s	patented	design	which	had	become	the	standard	in	the	indus-
try	ten	years	ago	and	has	been	copied	by	a	number	of	other	competitors,”	said	Mr.	Stuart.	“the	enhanced	damages	award	underscores	
the	clear	willful	infringement	of	this	valid,	enforceable	and	important	patent.”

established	in	1970	and	ranked	among	the	100	largest	law	firms	in	the	united	States,	cozen	o’connor	has	575	attorneys	who	
help	clients	manage	risk	and	make	better	business	decisions.	the	firm	counsels	clients	on	their	most	sophisticated	legal	matters	in	
all	areas	of	the	law,	including	litigation,	corporate,	and	regulatory	law.	representing	a	broad	array	of	leading	global	corporations	and	
middle	market	companies,	cozen	o’connor	serves	its	clients’	needs	through	22	offices	across	two	continents.

